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Abstract

Most existing model-based approaches to anomaly de-
tection construct a profile of normal instances, then iden-
tify instances that do not conform to the normal profile as
anomalies. This paper proposes a fundamentally different
model-based method that explicitly isolates anomalies in-
stead of profiles normal points. To our best knowledge, the
concept of isolation has not been explored in current liter-
ature. The use of isolation enables the proposed method,
iForest, to exploit sub-sampling to an extent that is not fea-
sible in existing methods, creating an algorithm which has a
linear time complexity with a low constant and a low mem-
ory requirement. Our empirical evaluation shows that iFor-
est performs favourably to ORCA, a near-linear time com-
plexity distance-based method, LOF and Random Forests in
terms of AUC and processing time, and especially in large
data sets. iForest also works well in high dimensional prob-
lems which have a large number of irrelevant attributes,
and in situations where training set does not contain any
anomalies.

1 Introduction

Anomalies are data patterns that have different data char-
acteristics from normal instances. The detection of anoma-
lies has significant relevance and often provides critical ac-
tionable information in various application domains. For
example, anomalies in credit card transactions could signify
fraudulent use of credit cards. An anomalous spot in an as-
tronomy image could indicate the discovery of a new star.
An unusual computer network traffic pattern could stand
for an unauthorised access. These applications demand
anomaly detection algorithms with high detection perfor-
mance and fast execution.

Most existing model-based approaches to anomaly de-
tection construct a profile of normal instances, then iden-
tify instances that do not conform to the normal profile as

anomalies. Notable examples such as statistical methods
[11], classification-based methods [1], and clustering-based
methods [5] all use this general approach. Two major draw-
backs of this approach are: (i) the anomaly detector is opti-
mized to profile normal instances, but not optimized to de-
tect anomalies—as a consequence, the results of anomaly
detection might not be as good as expected, causing too
many false alarms (having normal instances identified as
anomalies) or too few anomalies being detected; (ii) many
existing methods are constrained to low dimensional data
and small data size because of their high computational
complexity.

This paper proposes a different type of model-based
method that explicitly isolates anomalies rather than profiles
normal instances. To achieve this, our proposed method
takes advantage of two anomalies’ quantitative properties:
i) they are the minority consisting of fewer instances and
ii) they have attribute-values that are very different from
those of normal instances. In other words, anomalies are
‘few and different’, which make them more susceptible to
isolation than normal points. We show in this paper that a
tree structure can be constructed effectively to isolate every
single instance. Because of their susceptibility to isolation,
anomalies are isolated closer to the root of the tree; whereas
normal points are isolated at the deeper end of the tree. This
isolation characteristic of tree forms the basis of our method
to detect anomalies, and we call this tree Isolation Tree or
iTree.

The proposed method, called Isolation Forest or iFor-
est, builds an ensemble of iTrees for a given data set, then
anomalies are those instances which have short average path
lengths on the iTrees. There are only two variables in this
method: the number of trees to build and the sub-sampling
size. We show that iForest’s detection performance con-
verges quickly with a very small number of trees, and it
only requires a small sub-sampling size to achieve high de-
tection performance with high efficiency.

Apart from the key difference of isolation versus pro-
filing, iForest is distinguished from existing model-based
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[11, 1, 5], distance-based [6] and density-based methods [4]
in the follow ways:

• The isolation characteristic of iTrees enables them to
build partial models and exploit sub-sampling to an
extent that is not feasible in existing methods. Since
a large part of an iTree that isolates normal points is
not needed for anomaly detection; it does not need to
be constructed. A small sample size produces better
iTrees because the swamping and masking effects are
reduced.

• iForest utilizes no distance or density measures to de-
tect anomalies. This eliminates major computational
cost of distance calculation in all distance-based meth-
ods and density-based methods.

• iForest has a linear time complexity with a low
constant and a low memory requirement. To our
best knowledge, the best-performing existing method
achieves only approximate linear time complexity with
high memory usage [13].

• iForest has the capacity to scale up to handle extremely
large data size and high-dimensional problems with a
large number of irrelevant attributes.

This paper is organised as follows: In Section 2, we
demonstrate isolation at work using an iTree that recursively
partitions data. A new anomaly score based on iTrees is also
proposed. In Section 3, we describe the characteristic of this
method that helps to tackle the problems of swamping and
masking. In Section 4, we provide the algorithms to con-
struct iTrees and iForest. Section 5 empirically compares
this method with three state-of-the-art anomaly detectors;
we also analyse the efficiency of the proposed method, and
report the experimental results in terms of AUC and pro-
cessing time. Section 6 provides a discussion on efficiency,
and Section 7 concludes this paper.

2 Isolation and Isolation Trees

In this paper, the term isolation means ‘separating an in-
stance from the rest of the instances’. Since anomalies are
‘few and different’ and therefore they are more susceptible
to isolation. In a data-induced random tree, partitioning of
instances are repeated recursively until all instances are iso-
lated. This random partitioning produces noticeable shorter
paths for anomalies since (a) the fewer instances of anoma-
lies result in a smaller number of partitions – shorter paths
in a tree structure, and (b) instances with distinguishable
attribute-values are more likely to be separated in early par-
titioning. Hence, when a forest of random trees collectively
produce shorter path lengths for some particular points, then
they are highly likely to be anomalies.

(a) Isolating xi (b) Isolating xo

(c) Average path lengths converge

Figure 1. Anomalies are more susceptible to
isolation and hence have short path lengths.
Given a Gaussian distribution (135 points),
(a) a normal point xi requires twelve random
partitions to be isolated; (b) an anomaly xo re-
quires only four partitions to be isolated. (c)
averaged path lengths of xi and xo converge
when the number of trees increases.

To demonstrate the idea that anomalies are more suscep-
tible to isolation under random partitioning, we illustrate
an example in Figures 1(a) and 1(b) to visualise the ran-
dom partitioning of a normal point versus an anomaly. We
observe that a normal point, xi, generally requires more
partitions to be isolated. The opposite is also true for the
anomaly point, xo, which generally requires less partitions
to be isolated. In this example, partitions are generated by
randomly selecting an attribute and then randomly selecting
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a split value between the maximum and minimum values of
the selected attribute. Since recursive partitioning can be
represented by a tree structure, the number of partitions re-
quired to isolate a point is equivalent to the path length from
the root node to a terminating node. In this example, the
path length of xi is greater than the path length of xo.

Since each partition is randomly generated, individual
trees are generated with different sets of partitions. We av-
erage path lengths over a number of trees to find the ex-
pected path length. Figure 1(c) shows that the average path
lengths of xo and xi converge when the number of trees in-
creases. Using 1000 trees, the average path lengths of xo

and xi converge to 4.02 and 12.82 respectively. It shows
that anomalies are having path lengths shorter than normal
instances.

Definition : Isolation Tree. Let T be a node of an isola-
tion tree. T is either an external-node with no child, or an
internal-node with one test and exactly two daughter nodes
(Tl,Tr). A test consists of an attribute q and a split value p
such that the test q < p divides data points into Tl and Tr.

Given a sample of data X = {x1, ..., xn} of n in-
stances from a d-variate distribution, to build an isolation
tree (iTree), we recursively divide X by randomly select-
ing an attribute q and a split value p, until either: (i) the
tree reaches a height limit, (ii) |X| = 1 or (iii) all data in
X have the same values. An iTree is a proper binary tree,
where each node in the tree has exactly zero or two daughter
nodes. Assuming all instances are distinct, each instance is
isolated to an external node when an iTree is fully grown, in
which case the number of external nodes is n and the num-
ber of internal nodes is n − 1; the total number of nodes
of an iTrees is 2n− 1; and thus the memory requirement is
bounded and only grows linearly with n.

The task of anomaly detection is to provide a ranking
that reflects the degree of anomaly. Thus, one way to de-
tect anomalies is to sort data points according to their path
lengths or anomaly scores; and anomalies are points that
are ranked at the top of the list. We define path length and
anomaly score as follows.

Definition : Path Length h(x) of a point x is measured by
the number of edges x traverses an iTree from the root node
until the traversal is terminated at an external node.

An anomaly score is required for any anomaly detection
method. The difficulty in deriving such a score from h(x)
is that while the maximum possible height of iTree grows
in the order of n, the average height grows in the order of
log n [7]. Normalization of h(x) by any of the above terms
is either not bounded or cannot be directly compared.

Since iTrees have an equivalent structure to Binary
Search Tree or BST (see Table 1), the estimation of aver-
age h(x) for external node terminations is the same as the

iTree BST
Proper binary trees Proper binary trees
External node termination Unsuccessful search
Not applicable Successful search

Table 1. List of equivalent structure and oper-
ations in iTree and Binary Search Tree (BST)

unsuccessful search in BST. We borrow the analysis from
BST to estimate the average path length of iTree. Given a
data set of n instances, Section 10.3.3 of [9] gives the aver-
age path length of unsuccessful search in BST as:

c(n) = 2H(n− 1)− (2(n− 1)/n), (1)

where H(i) is the harmonic number and it can be estimated
by ln(i) + 0.5772156649 (Euler’s constant). As c(n) is the
average of h(x) given n, we use it to normalise h(x). The
anomaly score s of an instance x is defined as:

s(x, n) = 2−
E(h(x))

c(n) , (2)

where E(h(x)) is the average of h(x) from a collection of
isolation trees. In Equation (2):

• when E(h(x))→ c(n), s→ 0.5;

• when E(h(x))→ 0, s→ 1;

• and when E(h(x))→ n− 1, s→ 0.

s is monotonic to h(x). Figure 2 illustrates the relationship
between E(h(x)) and s, and the following conditions ap-
plied where 0 < s ≤ 1 for 0 < h(x) ≤ n − 1. Using the
anomaly score s, we are able to make the following assess-
ment:

• (a) if instances return s very close to 1, then they are
definitely anomalies,

• (b) if instances have smuch smaller than 0.5, then they
are quite safe to be regarded as normal instances, and

• (c) if all the instances return s ≈ 0.5, then the entire
sample does not really have any distinct anomaly.

A contour of anomaly score can be produced by passing
a lattice sample through a collection of isolation trees, fa-
cilitating a detailed analysis of the detection result. Figure
3 shows an example of such a contour, allowing a user to
visualise and identify anomalies in the instance space. Us-
ing the contour, we can clearly identify three points, where
s ≥ 0.6, which are potential anomalies.
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Figure 2. The relationship of expected path
length E(h(x)) and anomaly score s. c(n) is
the average path length as defined in equa-
tion 1. If the expected path length E(h(x))
is equal to the average path length c(n), then
s = 0.5, regardless of the value of n.

3 Characteristic of Isolation Trees

This section describes the characteristic of iTrees and
their unique way of handling the effects of swamping and
masking. As a tree ensemble that employs isolation trees,
iForest a) identifies anomalies as points having shorter path
lengths, and b) has multiple trees acting as ‘experts’ to tar-
get different anomalies. Since iForest does not need to iso-
late all of normal instances – the majority of the training
sample, iForest is able to work well with a partial model
without isolating all normal points and builds models using
a small sample size.

Contrary to existing methods where large sampling size
is more desirable, isolation method works best when the
sampling size is kept small. Large sampling size reduces
iForest’s ability to isolate anomalies as normal instances can
interfere with the isolation process and therefore reduces
its ability to clearly isolate anomalies. Thus, sub-sampling
provides a favourable environment for iForest to work well.
Throughout this paper, sub-sampling is conducted by ran-
dom selection of instances without replacement.

Problems of swamping and masking have been studied
extensively in anomaly detection [8]. Swamping refers to

Figure 3. Anomaly score contour of iFor-
est for a Gaussian distribution of sixty-four
points. Contour lines for s = 0.5, 0.6, 0.7 are
illustrated. Potential anomalies can be iden-
tified as points where s ≥ 0.6.

wrongly identifying normal instances as anomalies. When
normal instances are too close to anomalies, the number of
partitions required to separate anomalies increases – which
makes it harder to distinguish anomalies from normal in-
stances. Masking is the existence of too many anomalies
concealing their own presence. When an anomaly cluster is
large and dense, it also increases the number of partitions
to isolate each anomaly. Under these circumstances, eval-
uations using these trees have longer path lengths making
anomalies more difficult to detect. Note that both swamp-
ing and masking are a result of too many data for the pur-
pose of anomaly detection. The unique characteristic of
isolation trees allows iForest to build a partial model by
sub-sampling which incidentally alleviates the effects of
swamping and masking. It is because: 1) sub-sampling con-
trols data size, which helps iForest better isolate examples
of anomalies and 2) each isolation tree can be specialised,
as each sub-sample includes different set of anomalies or
even no anomaly.

To illustrate this, Figure 4(a) shows a data set gener-
ated by Mulcross. The data set has two anomaly clusters
located close to one large cluster of normal points at the
centre. There are interfering normal points surrounding
the anomaly clusters, and the anomaly clusters are denser
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(a) Original sample
(4096 instances)

(b) Sub-sample
(128 instances)

Figure 4. Using generated data to demon-
strate the effects of swamping and masking,
(a) shows the original data generated by Mul-
cross. (b) shows a sub-sample of the original
data. Circles (◦) denote normal instances and
triangles (4) denote anomalies.

than normal points in this sample of 4096 instances. Fig-
ure 4(b) shows a sub-sample of 128 instances of the origi-
nal data. The anomalies clusters are clearly identifiable in
the sub-sample. Those normal instances surrounding the
two anomaly clusters have been cleared out, and the size of

anomaly clusters becomes smaller which makes them easier
to identify. When using the entire sample, iForest reports an
AUC of 0.67. When using a sub-sampling size of 128, iFor-
est achieves an AUC of 0.91. The result shows iForest’s
superior anomaly detection ability in handling the effects
swamping and masking through a sigificantly reduced sub-
sample.

4 Anomaly Detection using iForest

Anomaly detection using iForest is a two-stage process.
The first (training) stage builds isolation trees using sub-
samples of the training set. The second (testing) stage
passes the test instances through isolation trees to obtain
an anomaly score for each instance.

4.1 Training Stage

In the training stage, iTrees are constructed by recur-
sively partitioning the given training set until instances are
isolated or a specific tree height is reached of which results
a partial model. Note that the tree height limit l is automat-
ically set by the sub-sampling size ψ: l = ceiling(log2 ψ),
which is approximately the average tree height [7]. The ra-
tionale of growing trees up to the average tree height is that
we are only interested in data points that have shorter-than-
average path lengths, as those points are more likely to be
anomalies. Details of the training stage can be found in Al-
gorithms 1 and 2.

Algorithm 1 : iForest(X, t, ψ)
Inputs: X - input data, t - number of trees, ψ - sub-
sampling size
Output: a set of t iTrees

1: Initialize Forest
2: set height limit l = ceiling(log2 ψ)
3: for i = 1 to t do
4: X ′ ← sample(X,ψ)
5: Forest← Forest ∪ iT ree(X ′, 0, l)
6: end for
7: return Forest

There are two input parameters to the iForest algorithm.
They are the sub-sampling size ψ and the number of trees t.
We provide a guide below to select a suitable value for each
of the two parameters.

Sub-sampling size ψ controls the training data size. We
find that when ψ increases to a desired value, iForest de-
tects reliably and there is no need to increase ψ further be-
cause it increases processing time and memory size without
any gain in detection performance. Empirically, we find
that setting ψ to 28 or 256 generally provides enough de-
tails to perform anomaly detection across a wide range of
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Algorithm 2 : iT ree(X, e, l)
Inputs: X - input data, e - current tree height, l - height
limit
Output: an iTree

1: if e ≥ l or |X| ≤ 1 then
2: return exNode{Size← |X|}
3: else
4: let Q be a list of attributes in X
5: randomly select an attribute q ∈ Q
6: randomly select a split point p from max and min

values of attribute q in X
7: Xl ← filter(X, q < p)
8: Xr ← filter(X, q ≥ p)
9: return inNode{Left← iT ree(Xl, e+ 1, l),

10: Right← iT ree(Xr, e+ 1, l),
11: SplitAtt← q,
12: SplitV alue← p}
13: end if

data. Unless otherwise specified, we use ψ = 256 as the
default value for our experiment. An analysis on the effect
sub-sampling size can be found in section 5.2 which shows
that the detection performance is near optimal at this default
setting and insensitive to a wide range of ψ.

Number of tree t controls the ensemble size. We find
that path lengths usually converge well before t = 100. Un-
less otherwise specified, we shall use t = 100 as the default
value in our experiment.

At the end of the training process, a collection of trees
is returned and is ready for the evaluation stage. The com-
plexity of the training an iForest is O(tψ logψ).

4.2 Evaluating Stage

In the evaluating stage, an anomaly score s is derived
from the expected path length E(h(x)) for each test in-
stance. E(h(x)) are derived by passing instances through
each iTree in an iForest. Using PathLength function, a
single path length h(x) is derived by counting the number
of edges e from the root node to a terminating node as in-
stance x traverses through an iTree. When x is terminated
at an external node, where Size > 1, the return value is e
plus an adjustment c(Size). The adjustment accounts for
an unbuilt subtree beyond the tree height limit. When h(x)
is obtained for each tree of the ensemble, an anomaly score
is produced by computing s(x, ψ) in Equation 2. The com-
plexity of the evaluation process is O(nt logψ), where n is
the testing data size. Details of the PathLength function
can be found in Algorithm 3. To find the top m anomalies,
simply sorts the data using s in descending order. The first
m instances are the top m anomalies.

Algorithm 3 : PathLength(x, T, e)
Inputs : x - an instance, T - an iTree, e - current path length;
to be initialized to zero when first called
Output: path length of x

1: if T is an external node then
2: return e+ c(T.size) {c(.) is defined in Equation 1}
3: end if
4: a← T.splitAtt
5: if xa < T.splitV alue then
6: return PathLength(x, T.left, e+ 1)
7: else {xa ≥ T.splitV alue}
8: return PathLength(x, T.right, e+ 1)
9: end if

5 Empirical Evaluation

This section presents the detailed results for four sets of
experiment designed to evaluate iForest. In the first exper-
iment we compare iForest with ORCA [3], LOF [6] and
Random Forests (RF) [12]. LOF is a well known density
based method, and RF is selected because this algorithm
also uses tree ensembles. In the second experiment, we ex-
amine the impact of different sub-sampling sizes using the
two largest data sets in our experiments. The results pro-
vide an insight as to what sub-sampling size should be used
and its effects on detection performance. The third exper-
iment extends iForest to handle high-dimensional data; we
reduce attribute space before tree construction by applying
a simple uni-variate test for each sub-sample. We aim to
find out whether this simple mechanism is able to improve
iForest’s detection performance in high dimensional spaces.
In many cases, anomaly data are hard to obtain, the fourth
experiment examines iForest’s performance when only nor-
mal instances are available for training. For all the experi-
ments, actual CPU time and Area Under Curve (AUC) are
reported. They are conducted as single threaded jobs pro-
cessed at 2.3GHz in a Linux cluster (www.vpac.org).

The benchmarking method is ORCA - a k-Nearest
Neighbour (k-nn) based method and one of the state-of-the-
art anomaly detection methods, where the largest demand
of processing time comes from the distance calculation of
k nearest neighbours. Using sample randomisation together
with a simple pruning rule, ORCA is claimed to be able to
cut down the complexity of O(n2) to near linear time [3].

In ORCA, the parameter k determines the number of
nearest neighbourhood, increasing k also increases the run
time. We use ORCA’s default setting of k = 5 in our ex-
periment unless otherwise specified. The parameter N de-
termines how many anomalies are reported. If N is small,
ORCA increases the running cutoff rapidly and pruning off
more searches, resulting in a much faster run time. How-
ever, it would be unreasonable to set N below the number
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of anomalies due to AUC’s requirement to report anomaly
scores for every instances. Since choosing N has an ef-
fect on run time and the number of anomalies is not sup-
posed to be known in the training stage, we will use a rea-
sonable value N = n

8 unless otherwise specified. Using
ORCA’s original default setting (k = 5 and N = 30), all
data sets larger than one thousand points report AUC close
to 0.5, which is equivalent to randomly selecting points as
anomalies. In reporting processing time, we report the total
training and testing time, but omit the pre-processing time
“dprep” from ORCA.

As for LOF, we use a commonly used setting of k = 10
in our experiment. As for RF, we use t = 100 and other pa-
rameters in their default values. Because RF is a supervised
learner, we follow the exact instruction as in [12] to generate
synthetic data as the alternative class. The alternative class
is generated by uniformly sampling random points valued
between the maximums and minimums of all attributes.
Proximity measure is calculated after decision trees are be-
ing constructed and anomalies are instances whose proxim-
ities to all other instances in the data are generally small.

We use eleven natural data sets plus a synthetic data
set for evaluation. They are selected because they contain
known anomaly classes as ground truth and these data sets
are used in the literature to evaluate anomaly detectors in a
similar setting. They include: the two biggest data subsets
(Http and Smtp) of KDD CUP 99 network intrusion data
as used in [14], Annthyroid, Arrhythmia, Wisconsin Breast
Cancer (Breastw), Forest Cover Type (ForestCover), Iono-
sphere, Pima, Satellite, Shuttle [2], Mammography1 and
Mulcross [10]. Since we are only interested in continuous-
valued attributes in this paper, all nominal and binary at-
tributes are removed. The synthetic data generator, Mul-
cross generates a multi-variate normal distribution with a
selectable number of anomaly clusters. In our experiments,
the basic setting for Mulcross is as following: contamina-
tion ratio = 10% (number of anomalies over the total num-
ber of points), distance factor = 2 (distance between the cen-
ter of normal cluster and anomaly clusters), and number of
anomaly clusters = 2. An example of Mulcross data can be
found in Figure 4. Table 2 provides the properties of all data
sets and information on anomaly classes sorted by the size
of data in descending order.

It is assumed that anomaly labels are unavailable in
the training stage. Anomaly labels are only available in
the evaluation stage to compute the performance measure,
AUC.

1The Mammography data set was made available by the courtesy of
Aleksandar Lazarevic

n d anomaly class
Http (KDDCUP99) 567497 3 attack (0.4%)

ForestCover 286048 10
class 4 (0.9%)

vs. class 2
Mulcross 262144 4 2 clusters (10%)
Smtp (KDDCUP99) 95156 3 attack (0.03%)
Shuttle 49097 9 classes 2,3,5,6,7 (7%)
Mammography 11183 6 class 1 (2%)
Annthyroid 6832 6 classes 1, 2 (7%)

Satellite 6435 36
3 smallest

classes (32%)
Pima 768 8 pos (35%)
Breastw 683 9 malignant (35%)

Arrhythmia 452 274
classes 03,04,05,07,
08,09,14,15 (15%)

Ionosphere 351 32 bad (36%)

Table 2. Table of Data properties, where n is
the number of instances, and d is the number
of dimensions, and the percentage in bracket
indicates the percentage of anomalies.

5.1 Comparison with ORCA, LOF and
Random Forests

The aim of this experiment is to compare iForest with
ORCA, LOF and RF in terms of AUC and processing time.
Table 3 reports the AUC score and actual run time for all
methods. From the table, we observe that iForest compares
favourably to ORCA. It shows that iForest as a model-based
method outperforms ORCA, a distance based method, in
terms of AUC and processing time. In particular, iForest is
more accurate and faster in all the data sets larger than one
thousand points.

Note that the difference in execution time is huge be-
tween iForest and ORCA, especially in large data sets; this
is due to the fact that iForest is not required to compute pair-
wise distances; this happens despite the fact that ORCA
only reports n

8 anomalies where iForest ranks all n points.
iForest compares favourable to LOF in seven out of eight

data sets examined and iForest is better than RF in all the
four data sets tested in terms of AUC. In terms of processing
time, iForest is superior in all the data sets as compared with
LOF and RF.

The performance of iForest is stable in a wide range of
t. Using the two data sets of highest dimension, Figure 5
shows that AUC converges at a small t. Since increasing
t also increases processing time, the early convergence of
AUC suggests that iForest’s execution time can be further
reduces if t is tuned to a data set.

As for the Http and Mulcross data sets, due to the large
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AUC Time (seconds)
iForest ORCA LOF RF iForest ORCA LOF RF

Train Eval. Total
Http (KDDCUP99) 1.00 0.36 NA NA 0.25 15.33 15.58 9487.47 NA NA

ForestCover 0.88 0.83 NA NA 0.76 15.57 16.33 6995.17 NA NA
Mulcross 0.97 0.33 NA NA 0.26 12.26 12.52 2512.20 NA NA

Smtp (KDDCUP99) 0.88 0.80 NA NA 0.14 2.58 2.72 267.45 NA NA
Shuttle 1.00 0.60 0.55 NA 0.30 2.83 3.13 156.66 7489.74 NA

Mammography 0.86 0.77 0.67 NA 0.16 0.50 0.66 4.49 14647.00 NA
Annthyroid 0.82 0.68 0.72 NA 0.15 0.36 0.51 2.32 72.02 NA

Satellite 0.71 0.65 0.52 NA 0.46 1.17 1.63 8.51 217.39 NA
Pima 0.67 0.71 0.49 0.65 0.17 0.11 0.28 0.06 1.14 4.98

Breastw 0.99 0.98 0.37 0.97 0.17 0.11 0.28 0.04 1.77 3.10
Arrhythmia 0.80 0.78 0.73 0.60 2.12 0.86 2.98 0.49 6.35 2.32
Ionosphere 0.85 0.92 0.89 0.85 0.33 0.15 0.48 0.04 0.64 0.83

Table 3. iForest performs favourably to ORCA, especially for large data sets where n > 1000. AUC
reported with boldfaced are the best performance. iForest is significantly faster than ORCA for large
data sets where n > 1000. We do not have the full results for LOF and RF because: (1) LOF has a high
computation complexity and is unable to complete some very high volume data sets in reasonable
time; (2) RF has a huge memory requirement, which requires system memory of (2n)2 to produce
proximity matrix in unsupervised learning settings.

(a) Arrhythmia (b) Satellite

Figure 5. Detection performance AUC (y-axis)
is converged at a small t (x-axis).

anomaly-cluster size and the fact that anomaly clusters have
an equal or higher density as compared to normal instances
(i.e., masking effect), ORCA reports a poorer-than-average
result on these data sets. We also experiment ORCA on
these data sets using a higher value of k (where k = 150),
however the detection performance is similar. This high-
lights one problematic assumption in ORCA and other sim-
ilar k-nn based methods: they can only detect low-density
anomaly clusters of size smaller than k. Increasing k may
solve the problem, but it is not practical in high volume set-
ting due to the increase in processing time.

5.2 Efficiency Analysis

This experiment investigates iForest’s efficiency in re-
lation to the sub-sampling size ψ. Using the two largest
data sets, Http and ForestCover, we examine the effect
of sub-sample size on detection accuracy and processing
time. In this experiment we adjust the sub-sampling size
ψ = 2, 4, 8, 16, ..., 32768.

Our findings are shown in Figure 6. We observe that
AUC converges very quickly at small ψ. AUC is near opti-
mal when ψ = 128 for Http and ψ = 512 for ForestCover,
and they are only a fraction of the original data (0.00045
for Http and 0.0018 for ForestCover). After this ψ setting,
the variation of AUC is minimal: ±0.0014 and ±0.023
respectively. Also note that the processing time increases
very modestly when ψ increases from 4 up to 8192. iFor-
est maintains its near optimal detection performance within
this range. In a nutshell, a small ψ provides high AUC and
low processing time, and a further increase of ψ is not nec-
essary.

5.3 High Dimensional Data

One of the important challenges in anomaly detection is
high dimensional data. For distance-based methods, every
point is equally sparse in high dimensional space — render-
ing distance a useless measure. For iForest, it also suffers
from the same ‘curse of dimensionality’.

In this experiment, we study a special case in which high
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(a) Http (b) ForestCover

Figure 6. A small sub-sampling size provides
both high AUC (left y-axis, solid lines) and
low processing time (right y-axis, dashed
lines, in seconds). Sub-sampling size (x-axis,
log scale) ranges ψ = 2, 4, 8, 16, ..., 32768.

dimension data sets has a large number of irrelevant at-
tributes or background noises, and show that iForest has
a significant advantage in processing time. We simulate
high dimensional data using Mammography and Annthy-
roid data sets. For each data set, 506 random attributes,
each uniformly distributed, valued between 0 and 1 are
added to simulate background noise. Thus, there is a total
of 512 attributes in each data sets. We use a simple sta-
tistical test, Kurtosis, to select an attribute subspace from
the sub-sample before constructing each iTree. Kurtosis
measures the ‘peakness’ of univariate distribution. Kurto-
sis is sensitive to the presence of anomalies and hence it
is a good attribute selector for anomaly detection. After
Kurtosis has provided a ranking for each attribute, a sub-
space of attributes is selected according to this ranking to
construct each tree. The result is promising and we show
that the detection performance improves when the subspace
size comes close to the original number of attributes. There
are other attribute selectors that we can choose from, e.g.,
Grubb’s test. However, in this section, we are only con-
cern with showcasing iForest’s ability to work with an at-
tribute selector to reduce dimensionality of anomaly detec-
tion tasks.

Figure 7 shows that a) processing time remains less than
30 seconds for the whole range of subspace sizes and b)
AUC peaks when subspace size is the same as the number
of original attributes and this result comes very close to the
result of ORCA using the original attributes only. When
ORCA is used on both high dimensional data sets, it reports
AUC close to 0.5 with processing time over one hundred
seconds. It shows that both data sets are challenging, how-
ever, iForest is able to improve the detection performance
by a simple addition of Kurtosis test. It may well be possible
for other methods to apply similar attribute reduction tech-

(a) Mammography (b) Annthyroid

Figure 7. iForest achieves good results on
high dimensional data using Kurtosis to se-
lect attributes. 506 irrelevant attributes are
added. AUC (left y-axis, solid lines) improves
when the subspace size (x-axis), comes
close to the number of original attributes and
processing time (right y-axis, dashed lines, in
seconds) increases slightly as subspace size
increases. iForest trained using the original
data has slightly better AUC (shown as the
top dotted lines).

nique to improve detection accuracy on high-dimensional
data, but the advantage of iForest is its low processing time
even in high dimensional data.

5.4 Training using normal instances only

“Does iForest work when training set contains normal
instances only? ” To answer this question, we conduct a
simple experiment using the two largest data sets in our ex-
periment. We first randomly divide each data set into two
parts, one for training and one for evaluation, so that the
AUC is derived on unseen data. We repeat this process ten
times and report the average AUC.

When training with anomalies and normal points, Http
reports AUC = 0.9997; however, when training with-
out anomalies, AUC reduces to 0.9919. For ForestCover,
AUC reduces from 0.8817 to 0.8802. Whilst there is a
small reduction in AUC, we find that using a larger sub-
sampling size can help to restore the detection performance.
When we increase the sub-sampling size from ψ = 256 to
ψ = 8, 192 for Http and ψ = 512 for ForestCover and train
without anomalies, AUC catches up to 0.9997 for Http and
0.884 for ForestCover.

6 Discussion

The implication of using a small sub-sample size is that
one can easily host an online anomaly detection system with
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minimal memory footprint. Using ψ = 256, the maximum
number of nodes is 511. Let the maximum size of a node
be b bytes, t be the number of trees. Thus, a working model
to detect anomaly is estimated to be less than 511tb bytes,
which is trivial in modern computing equipments.

iForest has time complexities ofO(tψ logψ) in the train-
ing stage and O(nt logψ) in the evaluating stage. For Http
data set, when ψ = 256, t = 100 and evaluating 283,748
instances, the total processing time is 7.6 seconds only. We
increase the sub-sampling size 64 times to ψ = 16384 and
the processing time increases by only 1.6 times to 11.9 sec-
onds. It shows that iForest has a low constant in its compu-
tational complexity.

iForest’s fast execution with low memory requirement is
a direct result of building partial models and requiring only
a significantly small sample size as compared to the given
training set. This capability is unparallel in the domain of
anomaly detection.

7 Conclusions

This paper proposes a fundamentally different model-
based method that focuses on anomaly isolation rather than
normal instance profiling. The concept of isolation has not
been explored in the current literature and the use of isola-
tion is shown to be highly effective in detecting anomalies
with extremely high efficiency. Taking advantage of anoma-
lies’ nature of ‘few and different’, iTree isolates anoma-
lies closer to the root of the tree as compared to normal
points. This unique characteristic allows iForest to build
partial models (as opposed to full models in profiling) and
employ only a tiny proportion of training data to build ef-
fective models. As a result, iForest has a linear time com-
plexity with a low constant and a low memory requirement
which is ideal for high volume data sets.

Our empirical evaluation shows that iForest performs
significantly better than a near-linear time complexity
distance-based method, ORCA, LOF and RF in terms of
AUC and execution time, especially in large data sets. In
addition, iForest converges quickly with a small ensemble
size, which enables it to detect anomalies with high effi-
ciency.

For high dimensional problems that contain a large num-
ber of irrelevant attributes, iForest can achieve high detec-
tion performance quickly with an additional attribute se-
lector; whereas a distance-based method either has poor
detection performance or requires significantly more time.
We also demonstrate that iForest works well even when no
anomalies are present in the training set. Essentially, Iso-
lation Forest is an accurate and efficient anomaly detector
especially for large databases. Its capacity in handling high
volume databases is highly desirable for real life applica-
tions.
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