Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
视频异常检测(Video Anomaly Detection, VAD)在安全监控和自动驾驶等应用中至关重要。然而,现有的VAD方法在检测到异常时很少提供背后的原理,这限制了它们在现实世界部署中获得公众信任的能力。因此需要开发出能够提供推理过程的VAD方法。大语言模型(LLMs)在各种推理任务中表现出色。然而LLMs对异常的理解与特定场景所需的异常定义之间存在不匹配,这使得LLMs在直接执行VAD任务时效果不足。